
Information and Entropy

J�M� Schumacher

CWI�

P�O� Box ����� ���� AB Amsterdam� The Netherlands

Tilburg University� Dept� of Econometrics�

P�O� Box ���	
� 	��� LE Tilburg� The Netherlands

The related notions of �information� and �entropy� are basic concepts in statis�

tics as well as in theoretical physics and in theoretical computer science� The

present paper provides a survey of the origin of these notions in the math�

ematical theory of communication as developed by Claude Shannon� and of

their use in the three mentioned �elds� The paper is the written version of a

talk held in one of a series of �reconstruction seminars� organized by a group

of system theorists in the Netherlands� To ensure the introductory level of

the lectures in these seminars� all presentations are given by non�experts�

�� The reconstruction seminar

This paper� is the written version of a presentation held in January ���� before
a group of system theorists� The presentation was part of a series of so�called
�reconstruction seminars�� To explain the background of the present paper	 it
is necessary to say a bit more about this seminar series� In September ����	 a
number of system theorists working in the Netherlands received a letter from
Jan Willems	 Christiaan Heij	 and Paula Rocha� In their letter	 the threesome
expressed their dissatisfaction with the overly specialized and technical nature
of many conference talks	 and with the lack of opportunity to discuss in some
depth developments outside of the immediate research environment� They
proposed to organize a series of �reconstruction seminars� which would serve as
sort of an antidote to this state of a
airs� The idea would be to form a group of
researchers in system theory	 each of whom would be assigned a subject outside
his or her own �eld of expertise	 in order to present a lecture on that subject
before the group� The time available for the lecture and the discussion would
be three hours per subject� In this way	 the group would broaden its knowledge
of a variety of �elds with a limited time investment�

�I would like to thank the participants in the reconstruction seminar for their unsparing
criticism of the original presentation� Also� I would like to thank Peter G�acs for his comments
on a preliminary version of this paper� Of course� any remaining errors are entirely my own
responsibility�
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This idea fell into fertile ground
 after a preparation period in which sub�
jects were selected and assigned	 the �rst seminar series took place in the spring
semester of ����� There were fourteen subjects in this �rst series	 and as many
speakers� The participants were allowed to bring one guest with them and so
the group actually attending the seminars consisted of about twenty��ve peo�
ple� The subjects in the �rst series would be hard to �t into one category �they
included wavelets	 coding theory	 quantum mechanics	 inverse scattering	 and
cointegration�	 but they are all in some way highlights in the general area of en�
gineering	 physics	 econometrics and mathematics� Discussions have certainly
been livelier than they are at most conferences	 and the learning rate was also
higher� A second series of reconstruction seminars is planned for �����
To avoid any possible misunderstanding that might arise in connection with

the term �system theory�	 let me point out the following� Mathematical system
theory is a branch of applied mathematics dealing with the relations between
time�dependent variables as described by systems of di
erential and algebraic
equations or by other means� It is true that the �eld draws upon a large
variety of mathematical disciplines and has applications in many branches of
engineering	 and this may be one of reasons why the idea of the reconstruction
seminar was well�received
 but in no way is there a pretension in the seminar
that all subjects treated could be brought under a unifying framework	 such
as may be the belief of proponents of a �general system theory�� The system
theorists taking part in the seminar are down�to�earth applied mathematicians
who certainly have an interest in powerful general settings	 but who don�t like
to waste their time on over�generalization�
It should perhaps also be explained where the name �reconstruction seminar�

comes from� Jan Willems told the following story about the origin of the name�
At some time during ����	 the three initiators were having a drink in a Heurigen
�a place where new wine is served� with a Soviet scientist who claimed that he
had just �reconstructed� himself� It turned out that he intended this term to be
a translation of the Russian word �perestroika�� The accuracy of this translation
may be doubted��restructuring� is perhaps closer to the original meaning of
the word than �reconstruction��but nevertheless	 or maybe just for that reason	
Jan and his companions thought that the name �reconstruction seminar� would
be appropriate for what they were contemplating at the time�
As mentioned above	 the present paper is the written version of one of the

lectures in the �rst series of the reconstruction seminar� The author certainly
satis�es the requirement of being a non�expert in his subject� The presentation
that is to follow will therefore be introductory and relatively non�technical �as
intended in the reconstruction seminar�
 completeness is not an objective� Ac�
tually the subject of �information and entropy� is a vast one	 providing ample
room for many lifetime scienti�c careers� It could seem preposterous to write
a survey of such a subject� Nevertheless	 if one believes that there is a contin�
uum of possibilities between knowing nothing and knowing everything about
a subject	 then it should also be possible to say something sensible on a given
topic within such an arbitrary time span as three hours	 for an audience with a
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decent general background in mathematics but little or no speci�c knowledge
of the subject� The present paper is the result of an attempt to do just this�

�� The mathematical theory of communication

�Information� is a word from everyday life	 but is also used in a more technical
sense	 sometimes with the related notion of �entropy�	 in various disciplines
such as communications engineering	 statistics	 computer science	 and physics	
in particular thermodynamics and statistical mechanics� The roots of the term
�entropy� lie in nineteenth�century physics	 but information theory as such is
usually considered as a product of the period following the Second World War	
and more in particular as the brain child of Claude E� Shannon� It seems �tting	
therefore	 to begin a survey of information and entropy with a description of
Shannon�s original development of the theory�
Claude Elwood Shannon ������ � worked as a communications engineer for

the Bell Company during the Second World War	 where he was involved in the
coding of messages such as the ones that were exchanged between Roosevelt
and Churchill� Most likely this is where he got the ideas about the upper limits
of e�ciency of coding that led him to his �mathematical theory of communi�
cation�� Shannon�s original paper �A mathematical theory of communication�
was published in the Bell System Technical Journal in two installments in ����
����� The paper was soon reprinted in a booklet published by the University of
Illinois Press ���� under the title The Mathematical Theory of Communication	
which also included a �non�technical� introduction by Warren Weaver� The
slight change of title expressed perhaps already growing con�dence that indeed
a new branch of science had been born�
It would certainly seem ambitious to develop a mathematical theory of com�

munication as this concept is understood in everyday life� As happens more
often	 the only way to say much about the subject is to discuss just a part of
it� In the introduction to his paper	 Shannon immediately stresses that he will
exclude the meaning of messages from his theory� His argument is simple and
e
ective� the semantic aspects are irrelevant to the engineer who is faced with
the problem of designing a communication system�

The signi�cant aspect is that the actual message is one selected from
a set �Shannon�s emphasis� of possible messages� The system must
be designed to operate for each possible selection	 not just the one
which will actually be chosen since this is unknown at the time of
design� ���	 p� ���

The term �each possible selection� here is somewhat crude	 since the important
aspect which forms the basis of Shannon�s theory is the statistical nature of
messages to be sent� The basic observation is that the e�ciency of coding
can be improved by making use of information on the relative frequency of
symbols� Given a source which emits symbols �or rather a statistical model of
that source	 which assigns probabilities to strings of symbols�	 there is an upper
bound on the e�ciency of coding schemes for that source� This upper bound
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can be expressed in standard units �say	 average number of bits per symbol�
and so it gives a number that quanti�es a rather basic property of the source�
That property is what Shannon calls the entropy � Given this idea	 the obvious
problem is how to compute the entropy for a given statistical model of a source	
and that is the main subject of Shannon�s paper�
Such may have been the line of thought that Shannon followed	 but it is

not the line of his exposition� In his paper he �rst introduces the entropy in
an axiomatic way	 and only later he shows how the entropy is related to the
maximal e�ciency of coding� His starting point is the following question� how
can we de�ne one number H�p�� � � � � pn� that represents the �uncertainty� in a
situation in which n possible events may occur with probabilities p�	 � � �	 pn�
The function H should satisfy the following requirements�

�i� H is continuous in the pi�s


�ii� for pi �
�
n 	 H should be increasing as a function of n


�iii� �weighted additivity�� holds�

Shannon proves that any function that satis�es the above requirements is nec�
essarily of the form�

H�p�� � � � � pn� � �k
nX
i��

pi log pi

where k is a positive constant� The pi�s all lie between � and � so that the ex�
pressions pi log pi are all negative or zero
 therefore	 the minus sign in the above
expression serves to make H�p�� � � � � pn� nonnegative for all possible values of
the pi�s� Since furthermore the numbers pi must add up to one	 the possibility
H�p�� � � � � pn� � � occurs only when one of the pi�s is equal to � and all the
others are zero	 which indeed corresponds to a situation of �zero uncertainty��
The formula above contains a constant k which remains to be speci�ed


equivalently	 one could change the base of the logarithm� The choice of k
corresponds to a choice of �unit of information�� If one takes logarithms to the
base � and �xes k by requiring that

H� �� �
�
� � � ��

the corresponding unit of information is called the �binary digit� or bit � The ab�
breviation	 which now belongs to the vocabulary of elementary school students	

�The meaning of this can be explained in an example� Suppose that event A occurs
with probability �

�
� and that if A does not occur� either B or C occurs with probability �

�

and �

�
respectively� In total� the events A� B� and C occur with probabilities �

�
� �

�
� and �

�

respectively� Weighted additivity requires that H� �
�
� �
�
� �
�
� � H� �

�
� �
�
�� �

�
H� �

�
� �
�
�� where the

factor �

�
appears because the choice between B and C only has to be made in one half of the

cases�
�By convention� the value of x log x at 	 is taken to be 	�
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was dubbed by John Tukey of Bell Laboratories ���� When writing his paper	
Shannon apparently didn�t consider the term �bit� to be �rmly entrenched	 for
he frequently uses the longer phrase instead�
The quantity H�p�� � � � � pn� is called the entropy of the probability distri�

bution given by the numbers p�� � � � � pn� Shannon borrowed this term from
physics	 and in his paper he brie�y refers to the use of the notion of entropy
in statistical mechanics	 mentioning Tolman�s book Principles of Statistical

Mechanics � The standard anecdote on how Shannon got to use this term is
the following one �reported in Scienti�c American	 ������ Shannon recalls his
deliberations on how to name the quantity that he had de�ned�

My greatest concern was what to call it� I thought of calling it
�information�	 but the word was overly used	 so I decided to call it
�uncertainty�� When I discussed it with John von Neumann	 he had
a better idea� Von Neumann told me	 You should call it entropy	 for
two reasons� In the �rst place	 your uncertainty function has been
used in statistical mechanics under that name	 so it already has a
name� In the second place	 and more important	 no one knows what
entropy really is	 so in a debate you will always have the advantage�

We shall come back to the use of the word �entropy� in physics later on in this
paper� Let it just be mentioned here that Von Neumann�s suggestion stirred
considerable discussion about the relation between entropy in information the�
ory and entropy in physics�
If one considers the information generated by a single event	 it is quite natural

to use the measure I�p� � � log p	 where p denotes the probability of the
event� Such a measure was in fact suggested by Wiener in ���� ����� It is
a standard fact in analysis that the logarithmic function is the only one that
satis�es I�pq� � I�p�� I�q� for all p and q in the interval ��� ��
 in other words	
the logarithmic information measure is the only one such that the amount of
information in two independent events is the sum of the amounts of information
in the two events separately� The choice of base � for the logarithm is enforced
by the normalization I� �� � � �� Shannon�s entropy H�p�� � � � � pn� can then be
interpreted as the expected amount of information from an experiment that has
n possible outcomes with known probabilities p�� � � � � pn� In other words	 if you
have a choice between several experiments	 there are good reasons to choose
the one that maximizes the entropy
 children who play �guess�my�number� use
this fact�

���� Optimal coding

To get closer to the intended application	 optimal coding of messages	 let us
now consider the entropy of an information source	 that is	 a source producing
symbols from a �nite alphabet according to some statistically described rule�
Shannon considers in particular �nite�state Markov chains such as the one
depicted in Figure �� The nodes labeled �	 �	 and � are called states � The
arrows denote transitions	 occurring with the indicated transition probabilities �
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Figure �� Finite�state Markov chain

The probabilities for transitions emanating from a given node must add up to ��
Each transition produces a symbol from some alphabet	 in this case fA�B�Cg�
This model is capable of describing strings of symbols with �certain types of�
statistical dependencies	 like in English the letter n is more likely to precede
an e than a z� The Markov chain is considered as operating for an inde�nitely
long time� Under mild conditions	 all states i have an equilibrium probability Pi
associated to them	 which gives the average fraction of time that the chain will
spend in state i	 regardless of which initial state was chosen� Each state also has
an entropy Hi associated to it	 corresponding to the probability distribution of
the symbols that may be emitted by a transition from state i� Shannon now
de�nes the entropy per symbol as

H �
X
i

PiHi�

This weighted average characterizes the expected rate at which information is
generated by the source� To add support to this interpretation	 Shannon proves
the following remarkable theorem� Choose any number q strictly between � and
�	 and denote by n�q�N� the minimal number of di
erent sequences of length
N emitted by the source that together have a probability at least equal to q� In
other words	 logn�q�N� is the number of bits that would be needed to specify
q � ���� of the occurring sequences of length N � Shannon shows that

lim
N��

logn�q�N�

N
� H

regardless of which q was chosen� This means that an arbitrarily large fraction
of long sequences generated by the source can be speci�ed using H bits per
symbol�
The entropy of an information source can also be characterized directly from

the statistical properties of the generated sequences� Shannon gives the follow�
ing formula�

H � lim
N��

� �

N

X
Bi

p�Bi� log p�Bi��
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where the summation extends over all sequences Bi of length N � In fact the
above expression could well serve as the de�nition of �entropy per symbol�
 it
certainly seems natural enough	 and the de�nition would then not be limited
to sources modelled by �nite�state Markov chains� For more general sources	
however	 it is not always clear how to compute the above limit	 and this may
have been the reason for Shannon to choose a more restrictive context��

The �rst main application of the entropy concept is the celebrated Shannon

coding theorem for a noiseless channel � The theorem can be phrased as follows�

Consider a source with entropyH �bits symbol� and a channel with
capacity C �bits second�� For every � � � it is possible to code the
source output in such a way that an average of more than C

H � �
symbols per second is transmitted through the channel� On the
other hand	 an average better than C

H bits per second cannot be
attained�

To make this more concrete	 let us consider a simple example �taken from
����� Suppose we have a source that emits either a � or a � every unit of
time
 a � occurs with probability �

� and a � occurs with probability �
� 	 in�

dependently of the value of other symbols in the sequence� The entropy is
����� log����� ���� log���� � ����	 and so according to Shannon�s theorem it
should be possible to achieve an average transmission speed of one symbol per
time unit even if only a channel having a capacity of ���� bits per time unit is
available� The required compression can in this case be achieved very simply	
namely by taking the emitted symbols together in groups of two� According
to the rules of the source	 the probability of occurrence is �

�� for ��	 �
�� for ��

and ��	 and �
�� for ��� If we code �� by �	 �� by ��	 �� by ���	 and �� by ���	�

then the average number of bits needed to code a group of two symbols from
the source is

�

��
� � � �

��
� � � �

��
� � � �

��
� � �

��

��
� �������

Dividing by �	 we obtain slightly over ���� for the average number of bits per
symbol�su�cient to get the required transmission speed� By forming blocks
of three symbols one can achieve an average number of ���� bits per symbol	
and the entropy is reached asymptotically by taking larger and larger blocks�
In general	 one gets a near�optimal coding system by looking at the probabil�

ities of sequences of length N 	 where N is large	 and assigning short codewords
to sequences of high probability and long codewords to sequences of low proba�
bility� More precisely	 the optimal codeword length for a sequence of probability

�The equilibrium probabilities for a 
nite�state Markov chain can be found by solving
a simple eigenvalue problem� so the expression that Shannon uses as the de
nition of the
entropy per symbol is indeed readily computable�

�This is a special case of a procedure for assigning codewords to groups of symbols known
as Hu�man coding� The coded messages will be uniquely decipherable even when the code
words are concatenated� because we are using a so�called pre�x code �cf� note �
��
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p is � log p bits� It is clear �for instance from the fact that � log p is in gen�
eral not an integer� that there are some problems of implementation associated
with this prescription	 and that the optimum can in general only be reached in
the limit� As Shannon notes himself	 highly e�cient codes tend to require long
memories and so may not be very practical� E�ciency of coding �in connec�
tion with other factors which will partly be discussed below� remains an active
research �eld�

���� Mutual entropy

Many interesting and important aspects are added to the theory when we
consider mutual entropies 	 which are designed to measure the information con�
tained in one variable concerning another variable� Shannon discusses this
subject extensively in his paper
 his motivation is the noisy channel	 in which
the symbol received contains probabilistic rather than absolute information
about the symbol that was sent� The theory can be formulated	 however	 in a
rather general setting in which one speaks just about two stochastic variables
x and y� The main new concepts are the conditional entropy of y given x	 and
the information in x about y� These concepts are obtained as follows�
Let x and y be discrete stochastic variables	 each with a �nite number of

possible values� The two variables are in general correlated	 so that the uncer�
tainty about y will be a
ected if we know the outcome of x� Speci�cally	 if we
know that the outcome of x is i	 then the resulting entropy of y is expressed in
terms of the conditional probabilities of the outcomes of y�

H�y j x � i� � �
X
j

P �y � j j x � i� logP �y � j j x � i��

Taking the weighted average with respect to the various possible outcomes of
x	 one obtains the conditional entropy� of y given x�

H�y j x� �
X
i

P �x � i�H�y j x � i�

� �
X
i

P �x � i�
X
j

P �y � j j x � i� logP �y � j j x � i��

Using Bayes� rule	

P �y � j j x � i� �
P �y � j � x � i�

P �x � i�
�

one can rewrite the conditional probabilities that appear here in terms of joint
probabilities� This leads to the following expression for the conditional entropy�

H�y j x� �
X
i

X
j

P �x � i � y � j� log
P �x � i � y � j�

P �x � i�
�

�The notation used here di�ers from Shannon�s�
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One may also de�ne a joint entropy of the two variables x and y	 which is just
the entropy of the variable �x� y��

H�x� y� �
X
i

X
j

P �x � i � y � j� logP �x � i � y � j��

If we now compute the di
erence H�x� y��H�y j x�	 we get

H�x� y��H�y j x� � �
X
i

X
j

P �x � i � y � j� logP �x � i�

� �
X
i

P �x � i� logP �x � i�

� H�x��

The resulting formula

H�x� y� � H�x� �H�y j x� ���

may be phrased as� the uncertainty about x and y together is equal to the
uncertainty about x plus the uncertainty about y when x is given� That is
certainly as it should be�
Another expected property is that the conditional entropy of y given x is

always less than the entropy of y	 except when y and x are independent	 in
which case the entropies should be the same� This follows from the equality we
just derived	 together with the inequality H�x� y� � H�x��H�y� which results
from	

H�x� y� � �
X
i

X
j

P �x � i � y � j� logP �x � i � y � j�

� �
X
i

X
j

P �x � i � y � j� log�P �x � i�P �y � j��

� H�x� �H�y��

Equality holds if and only if x and y are independent�


Because H�x� � H�y j x� � H�x� y� � H�y� � H�x j y�	 we can de�ne a
quantity that is symmetric in x and y by

I�x � y� � H�x��H�x j y� � H�y��H�y j x��
This quantity is called the �information in x about y� �or	 of course	 the in�
formation in y about x�� It is not di�cult to get an expression for this which
clearly shows the symmetry between x and y�

H�x��H�x j y� � �
X
i

X
j

P �x � i � y � j� logP �x � i�

�The inequality between the 
rst and the second line is a special case of a rule which will
be shown later�see ����

�For this see also ����
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�
X
i

X
j

P �x � i � y � j� log
P �x � i � y � j�

P �y � j�

�
X
i

X
j

P �x � i � y � j� log
P �x � i � y � j�

P �x � i�P �y � j�
�

Now	 let x denote the input into a channel	 and let y be the corresponding
output that is received at the other end	 and that may have been corrupted by
noise�� The capacity of the channel is de�ned by Shannon as the information
in y about x when the source is suitably adapted to the channel	 so

C � max�H�y��H�y j x��

where the maximum is taken over all sources� This poses a maximization
problem which	 depending on the statistics of the channel	 may or may not be
di�cult to solve� Shannon shows that the channel capacity is equal to the limit
expression

C � lim
T��

logN�T� q�

T
�

whereN�T� q� denotes the maximal number of sequences of length T that can be
sent through the channel with probability at most q of incorrect interpretation�
The formula holds for any q strictly between � and ��
Shannon�s coding theorem for a noisy channel now states the following�

Consider a source with entropy H 	 and a channel with capacity C	
both measured in bits per second��� It is possible to send infor�
mation from the source through the channel with arbitrarily small
error frequency by suitable encoding if and only if H � C�

Again	 Shannon readily admits that the coding schemes that he presents for
the su�ciency part of his proof are impractical� Error�correcting codes have
become the subject of a rich �eld of research	 with applications ranging from
satellite communications to CD players�

���� Continuous probability distributions

Shannon devoted a large part of his paper to the study of entropy for continuous
distributions� Here we shall only mention the most basic points� In view of the
de�nition of entropy for discrete variables	 the de�nition

H�x� � �
Z

p�x� log p�x� dx

for a continuously distributed variable with density p�x� strongly suggests itself�
However	 there is a feature here which does not appear in the discrete case�

	The term �channel� refers here to the complete trajectory between sender and receiver�
which includes not only the actual transmission but also all processing that is done locally�

�
So it is assumed here that the source is emitting symbols at a 
xed rate�
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For discrete variables	 one has H�y� � H�x� whenever y � ��x�	 where � is an
invertible mapping� If we try the e
ect of a transformation in the continuous�
time case	 however	 we get �J is the Jacobian matrix of the transformation��

H�y� � �
Z

p�y� log p�y� dy

� �
Z

p�x� det J�x� log�p�x� det J�x�� dy

� �
Z

p�x��log p�x� � log det J�x�� dx

� H�x��
Z

p�x� log det J�x� dx�

The formula shows that	 unless somehow a standard volume element is given	
the entropy of a continuous variable is only determined up to an additive con�
stant� Or in other words� in the continuous case	 only di�erences of entropies
are invariant under coordinate transformations�
It is of interest to look for distributions which maximize the entropy in a given

situation
 such distributions describe the �least informative� cases	 or	 from
another point of view	 the cases in which we gain most from doing experiments�
For discrete variables	 the answer is the obvious one� H�p�� � � � � pn� is maximal
when all pi�s are equal to

�
n 	 so when all possible outcomes are equally probable�

Some more calculation is needed for continuous distributions� Consider for
instance the problem of determining the maximum�entropy distribution on the
real line with expectation � and �xed variance ��� This leads to the following
optimization problem� maximize

�
Z

p�x� log p�x� dx

under Z
x�p�x� dx � ��

and Z
p�x� dx � ��

Introducing Lagrange multipliers in the integrand	 we �nd that

�p log p� �px� � 	p

is maximized over p when

��� log p� �x� � 	 � ��

This determines the form of p as a function of x�

p�x� � 
e�x
�

�
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As always in Lagrange optimization	 the constants must be determined such
that p�x� satis�es the side constraints
 this gives

p�x� �
�p
���

exp�
�

���
x���

the Gaussian distribution� The conclusion can be phrased as follows� among all
experiments that deliver a real value with a given variance ��	 the ones whose
outcomes are normally distributed are the most informative�

�� Entropy in physics

As noted above	 the term �entropy� had been in use long before John von Neu�
mann suggested to Shannon to employ this word� The concept was introduced
by Clausius in ���� as a macroscopic quantity whose existence could be de�
rived from the second law of thermodynamics� The statistical interpretation of
entropy in terms of microscopic states was developed later	 by Boltzmann in
�����
On the meaning of the terms �thermodynamics� and �statistical mechanics�	

let me quote Pais ���	 p� ����

Such concepts as temperature	 pressure	 along with energy	 and
what came to be called entropy	 are all macroscopic� The branch of
science dealing with the interrelations of these quantities is called
thermodynamics� It is not an easy subject� The connection be�
tween these macroscopic concepts and the underlying microscopic	
molecular properties is called statistical mechanics� It is a di�cult
subject�

The �rst law of thermodynamics is the law of conservation of energy� The
second law is sometimes given as �entropy is nondecreasing�	 but this is not the
original formulation and in fact the existence of an entropy function is derived	
as will be shown below	 from a principle that is stated in terms of heat	 work	
and temperature� One formulation	 ascribed to Carnot and also to Kelvin and
Planck	 is the following�

no process is possible which has as its only result the transformation
of heat into work�

Another formulation	 attributed to Clausius	 reads as follows�

no process is possible which has as its only result the transfer of
heat from a cooler to a warmer body�

To prove that these formulations are indeed equivalent	 it su�ces to show that
a process can be created that transfers heat from a cooler to a warmer body
if a process is available that transforms heat into work	 and vice versa
 this is
not too di�cult�
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Figure �� Carnot cycle�

The existence of a macroscopic quantity called the entropy is derived from
one of the two equivalent formulations by a reasoning which depends on the no�
tion of reversible processes � Such processes are idealizations of actual processes
that are nearly reversible� Using such idealizations in an early stage is perhaps
typical for physical reasoning
 a mathematician would probably prefer to work
with processes that are as near to being reversible as one wants	 and pass to
the limit only later� The following two examples of irreducible processes are
the standard ones	 and are used in in the derivation of the entropy�

Example �� �isothermic expansion compression�� Consider a cylinder �lled
with an ideal gas	 in contact with a heat reservoir of temperature T�� Pull out
a frictionless piston �very slowly�� The gas will expand while staying at the
same temperature	 and meanwhile will take up heat from the reservoir� This is
�in the limit� a reversible process
 by pushing in the piston again �very slowly�	
the whole system can be brought back into exactly the same condition as it
was before the expansion�

Example �� �adiabatic expansion compression�� Consider the same cylinder
as above	 but now in thermal isolation� Again pull out the piston very slowly�
The temperature of the gas will fall� This is again �in the limit� a reversible
process�

A concatenation of reversible processes is of course again reversible� By com�
bining the two types of processes just mentioned	 one can obtain a reversible
cycle� �rst isothermic expansion	 then adiabatic expansion	 then isothermic
compression	 and �nally adiabatic compression to the original state� This is
called a Carnot cycle
 the whole process can be plotted in the �V� P ��plane
as shown in Figure �� The curves corresponding to isothermic expansion and
compression satisfy PV � constant �actually PV � RT 	 where T is the temper�
ature�	 and the curves corresponding to adiabatic expansion and compression
satisfy PV � � constant	 where � � � is a constant which is typical of the gas
used� In terms of heat and work	 what happens during a Carnot cycle is that
the gas in the cylinder takes up an amount of heat �!Q�� from a reservoir at
temperature T�	 and delivers an amount of heat �!Q�� to another reservoir at
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Figure �� Heat engine�

a lower temperature T�
 in the whole cycle	 an amount of work is done equal
to
R
P dV 	 which is exactly the surface enclosed in Figure �� A Carnot cycle is

therefore an example of a heat engine	 the general form of which is sketched
in Figure ���� According to the �rst law of thermodynamics	 the amount of
work done by a heat engine must be equal to the di
erence between the heat
extracted from the warm reservoir and the heat delivered at the cold reservoir	
so

!U � �!Q�� � �!Q��

where �!Q�� is negative� One may expect	 however	 that a further relation
can be derived between �!Q��	 �!Q��	 T�	 and T� from the supposition that
the process is reversible� A few computations bear this out� Denote by a	 b	 c	
d the four intermediate stages in the Carnot cycle �see Fig� ��� We have

�!Q�� �

Z b

a

P dV �

Z b

a

RT�
dV

V
� RT� log

Vb
Va

and likewise

�!Q�� � RT� log
Vd
Vc

�

Furthermore	 it follows from the relation PbV
�
b � PcV

�
c and the relations

PbVb � RT� and PcVc � RT� that

T�V
���
b � T�V

���
c

and in the same way
T�V

���
a � T�V

���
d �

Dividing	 we get Vb
Va � Vc
Vd and so from the above�

�!Q��
T�

�
�!Q��
T�

� ��

��For the purpose of the reasoning to follow� one might just as well consider the converse of
this engine� namely one which applies work to extract heat from a cold reservoir and deliver
heat to a warm reservoir� Such an engine is commonly known as a refrigerator�
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Although this was derived for the Carnot cycle	 it follows from the second law
that this formula must be universal for reversible processes
 for	 if we would
have a reversible process that would not satisfy the relation above	 we could
couple it to the Carnot cycle in a suitable way such as to fabricate a process
that would violate the second law� For general processes	 the law that we just
derived takes the following form�I

dQ

T
� � along reversible paths�

This property now makes it possible to de�ne the entropy	 as a function of
temperature and volume	 by the following formula�

S�Tb� Vb� � S�Ta� Va� �

Z b

a

dQ

T

where the integral is taken along a reversible path� Indeed	 it follows from the
above that the answer does not depend on the choice of the reversible path�
This is the macroscopic de�nition of the entropy� Note	 by the way	 that this
de�nition only determines the entropy up to an additive constant�
As an example	 let us compute the entropy of an ideal gas at a constant

temperature T 	 so that the entropy will only be a function of the volume�
Using the ideal gas law PV � RT 	 one gets

S�Vb�� S�Va� �

Z b

a

dQ

T
�

�

T
!Q �

�

T

Z b

a

P dV

�
�

T

Z b

a

RT

V
dV � R�logVb � logVa��

This result may already be related to the information�theoretic entropy	 in the
following way� A typical gas molecule may be found with equal probabilities in
one of Na �cells��� in volume Va	 and in one of Nb cells in volume Vb� According
to the de�nition of Shannon�s entropy	 the di
erence in entropies is proportional
to logNb�logNa � logVb�logVa� Moreover	 if the molecules are independent	
we can just multiply by the number of molecules to get the di
erence of the total
entropies� So at least in this simple case	 the information�theoretic de�nition
of entropy is in line with the thermodynamic one�
Very brie�y	 let us now describe the way the entropy is de�ned in statistical

mechanics� The number of ways in which Ni indistinguishable particles may
be divided over the gi quantum states corresponding to a given energy level is
given approximately �for gi �� Ni� by g

Ni

i 
Ni"� So the number of �microstates�
with N� particles on energy level E�	 N� particles on energy level E�	 etc�	 is
given by

# �
gN�

�

N�"

gN�

�

N�"
� � � �

��A cell is supposed to be just small enough to contain one molecule� Exactly how small
this is fortunately turns out to be immaterial for the argument�
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This is called the thermodynamic probability � Stirling�s formula leads to the
following approximate expression�

log# �
X

Ni log
gi
Ni

�
X
i

Ni�

The entropy is now de�ned as

S � k log#

where k is Boltzmann�s constant� This quantity may also be interpreted as
the logarithm of the volume of the part of the phase space that corresponds
to a given macrostate� The increase of entropy appears in this framework as
a statistical law	 expressing the fact that a system when left to itself is most
likely to go from states of low probability to states of high probability�
In an equilibrium state	 one may assume the thermodynamic probability to

be maximal under the constraints
P

Ni � N �total number of particles� andP
NiEi � U �energy�� Applying the standard Lagrange optimization method

to the above approximate expression for log# produces the distribution law

Ni � 
gie
��Ei

where the constants 
 and � have to be determined from the side constraints�
For an ideal gas	 this leads to


 �
c�

V T ���
� � �

c�
T

where c� and c� are speci�c parameters for the gas� Computing log#	 one
obtains from this

log# � N logV � terms not depending on V �

From the above	 one sees that at least in the simplest case of the volume�
dependence of the entropy of an ideal gas	 this formula checks with the classical
thermodynamic de�nition�
Entropy played a role in the birth of quantum mechanics
 in fact Planck

introduced his quantum postulate at the turn of the century as a device allowing
him to obtain the correct formula for the entropy of a resonator� Of course	
the device later turned out to be useful also for other purposes� In the modern
axiomatization of the quantum theory	 to which Von Neumann has contributed
much	 a �normal state� is represented by a bounded linear operator � on a
separable Hilbert space	 satisfying trace � � �� In terms of this axiomatization	
our third de�nition of the physical entropy is

SI��� � �trace� log ��
This is certainly similar to Shannon�s de�nition of the entropy� It has been
argued however	 notably by Lindblad ����	 that the above expression is in�
variant under the action of the Hamiltonians that describe motion in quantum

���



mechanics	 and so is not of use in �nding the source of irreversibility� Lindblad
proposes to use a di
erent notion of entropy	 which coincides with the above
notion only for equilibrium states� He de�nes the P�entropy as

S��
P � � inf
�
�SI ������ �

Z
dE

T
��
 ���

where the in�mum is taken over all paths that can be obtained by using a
given set P of input vector �elds	 and that lead from the given state � to some
equilibrium state ����� This de�nition is remarkably close in spirit to the idea
of storage functions that has been used in studies of dissipativity within system
theory ����� Also the idea of dependence on available vector �elds is common
in system theory	 as noted by Lindblad ���	 p� ���� Which vector �elds are
available may depend on the current state of technology	 and so the P �entropy
as de�ned above is in principle a technology�dependent concept	 although the
state spaces in statistical mechanics are so large that the addition of a few more
vector �elds may not have much of an impact�
In conclusion	 it is clear that there is a strong relation between the information�

theoretic entropy and the entropy used in physics
 in fact	 for equilibrium states
the two may be identi�ed	 up to the choice of �unit of information�� Boltzmann�s
original picture is general enough to suggest also an information�theoretic in�
terpretation of the physical entropy for non�equilibrium states	 although the
relation with Shannon�s entropy �which is an average amount of information�
is then less clear� In the discussion on reversibility and irreversibility	 which
inevitably accompanies the entropy concept in physics	 contributions such as
the one by Lindblad suggest that other elements besides information�theoretic
ones may play a crucial role�

�� Information theory and statistics

The concept of information is basic in probability theory
 it has even been
argued that the concept of probability itself should be based on the notion of
information	 rather than vice versa ���� In statistics	 the word �information�
is used in various places	 such as in the Fisher information matrix and in the
information criteria used to determine the number of parameters in a model�
The purpose of this section is to describe brie�y some of the more conspicuous
uses that have been made of entropy in statistics�
We begin with the so�called Kullback�Leibler distance between probability

distributions	 which may be introduced as follows �cf� ����� Consider a stochastic
variable with values in the discrete set f�� � � � � ng� Suppose that we have the
following hypotheses�

H�� x is distributed according to f� � �p�� � � � � pn�

H�� x is distributed according to f� � �q�� � � � � qn��
Let P �Hj� denote our prior belief in Hj �j � �� ��� How will these beliefs
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change on the basis of an outcome x � i$ According to Bayes� rule	 one has

P �Hj j x � i� �
P �Hj�P �x � i j Hj�

P �x � i�
�

This gives
P �H� j x � i�

P �H� j x � i�
�

P �H��

P �H��

pi
qi

which expresses the �proportional� relation between the posterior beliefs in
terms of the relation between the prior beliefs and the outcome i of the ex�
periment� In order to describe the e
ects of successive experiments additively
rather than multiplicatively	 one can take logarithms and write

log
P �H� j x � i�

P �H� j x � i�
� log

P �H��

P �H��
� log

pi
qi
�

The quantity log�pi
qi� can be interpreted as the evidence in favor of hypothesis
H� as opposed to hypothesis H�	 due to outcome i� This quantity may of course
be positive or negative� The expected evidence in favor of H� in case H� is true

is now readily computed as

dKL�f�� f�� �

nX
i��

pi log
pi
qi
�

This is known as the �relative entropy�	 the �cross entropy�	 or the �Kullback�
Leibler distance� between the probability distributions f� and f�� The term
distance is used here in a rather wide sense� the Kullback�Leibler distance is
not symmetric and does not satisfy the triangle inequality� It does have the
most basic property of being nonnegative	 though	 as we should expect from a
quantity that gives the expected evidence in favor of H� in case H� is true� A
formal proof can readily be given���

X
pi log

pi
qi

� �
X

pi log
qi
pi
� � log

X
pi
qi
pi

� � log
X

qi � ��

The inequality here uses the convexity of the logarithm	 and the fact that the
pi�s describe a convex combination� Since the logarithm is even strictly convex	
the proof also shows that equality holds if and only if pi � qi for all i�
As an example	 we may consider the Kullback�Leibler distance between the

joint distribution of two discrete variables x and y and the product of their
marginal distributions� This distance is given by

X
i

X
j

P �x � i � y � j� log
P �x � i � y � j�

P �x � i�P �y � j�

��Note �for use later on� that the same inequality will hold if the qi�s sum up to less than
one�
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and may be interpreted as a measure of how quickly the dependence between
x and y will show up in experiments consisting of drawing a value for x and
one for y� The expression above is also exactly equal to the information in x
about y as de�ned by Shannon�
The Kullback�Leibler distance can be related to Fisher information in the fol�

lowing way� Consider a set of parametrized densities f�x� ��	 where the param�
eter vector � takes values in Rk 	 and de�ne dKL���� ��� � dKL�f��� ���� f��� �����
Choose a speci�c parameter value ��� The function � �� dKL���� �� clearly has
a minimum at � � ��	 and upon computing its Hessian one �nds

��

���
dKL���� ��

����
����

� G�����

where G���� is the Fisher information matrix at ��� In other words	 the Fisher
information matrix will be close to being singular	 so that even e�cient estima�
tors will have large variances	 if the minimum of the Kullback�Leibler distance
function at �� is shallow� By letting the Fisher information matrix de�ne a
Riemannian metric on the parameter space	 one may introduce a geodetic dis�
tance function between parameter values
 this distance function is not the same
as the Kullback�Leibler distance	 but according to the formula above they are
the same in�nitesimally�
The inequality that expresses the nonnegativity of the Kullback�Leibler dis�

tance may also be written as

�
X

pi log qi � �
X

pi log pi� ���

As noted above	 this inequality holds whenever pi � �	 qi � �	
P

pi � �	P
qi � �
 moreover	 equality holds if and only if pi � qi for all i� The right

hand side is	 of course	 the entropy of the probability distribution �p�� � � � � pn��
The left hand side may be interpreted as the average number of bits per symbol
in a code that uses � log qi bits for symbol i� The requirement

P
qi � � follows

from the Kraft inequality for the lengths i of binary pre�x codes���

X
���i � �

where �i � � log qi is the length of codeword i� The above inequality can
therefore be interpreted by saying that the average code length is optimized
by taking qi � pi� Turning this argument around	 one may also say that
optimizing the code for a given �long� sequence produces an estimate of the

�� A pre�x code is one in which no codeword is a pre
x of another codeword� that is�
no codeword can be extended with some symbols from the code alphabet to form another
codeword� For binary codes� this may also be expressed as follows� if we associate with
each codeword �say 	�	� the subinterval of �	� �� consisting of the numbers whose binary
expansion begins with the given codeword �so all numbers of the form �	�	 � � ��� then the
resulting subintervals are nonoverlapping� This also proves the Kraft inequality� since the
length of the subinterval associated with codeword i is ���i � where �i is the length of the
codeword� and the total length of the subintervals cannot exceed ��
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pi�s� This is one way of looking at the minimum description length principle	
which has been suggested in particular by Rissanen �see for instance ����� as
a rather universal strategy for estimation�
As was noted above	 already in his original paper Shannon computed prob�

ability distributions that maximize the entropy under certain constraints� In a
sense	 the maximum�entropy distribution is the most acceptable one if only the
data expressed by the constraints are given� Under certain reasonable�looking
axioms	 it can indeed be shown that if there is a general principle to determine
probability distributions from �testable information�	 then this should be the
maximum�entropy principle ����� The principle is popular in particular among
Bayesians	 because the maximization of the entropy gives a method to construct
prior distributions
 it does not hold a central place in mainstream statistics	
however� An example of a maximum�entropy solution which has gained wide
acceptance is Burg�s construction of a stationary process when only the �rst k
covariance matrices are given ����
Maximum�entropy principles are used also outside statistics to �nd unique

solutions �or	 let us say	 special solutions with interesting properties� for prob�
lems which otherwise would be underdetermined� One �nds examples in in�
terpolation theory ���	 and in the H��optimization which has become a major
research direction in control theory ������� These examples show that a concept
of entropy may be de�ned and may lead to interesting results even in a deter�
ministic context� What the meaning is of the entropy in such cases doesn�t
seem to have been discussed much�

�� Algorithmic theory of information

The �nal topic in this introductory paper is the algorithmic theory of infor�
mation	 also known as the information�theoretic study of complexity� Basic
references in this area include the papers by Solomonoff ����	 Kolmogorov
���	 and Chaitin ���	 and the survey paper by Zvonkin and Levin ����� The
approach hinges on the idea that the �entropy� �or �complexity�� of a given
sequence s can be determined as the length of the shortest program that com�
putes s� At �rst sight	 this idea looks unworkable	 since we are all too familiar
with the fact that the length of a program to compute some sequence �say the
�rst ���� digits in the decimal expansion of �� depends not only on that se�
quence	 but also on the computer used� This problem can be overcome by using
a �universal� computer �actually a class of computers�	 and by being content
with giving a de�nition of the entropy that contains an �error term��
In more detail	 the algorithmic program proceeds as follows� First	 one has

to de�ne what a computer is� The standard model is of course the Turing
machine	 as shown in Figure �� The program tape is read�only	 is scanned from
left to right	 and has �nite length� The work tape is read write	 is in�nitely
long	 and may be moved to the left and to the right� The computer is speci�ed
by giving	 for each state and for each pair of squares being scanned� an action

��The appearance of �minimum entropy� in the title of this reference is simply due to the
fact that the authors reversed the usual sign convention�

���



Figure �� Turing machine

�write�� write�� erase� left� right� next� stop� and a next state� It is
important to note that this speci�cation may be given through a �nite table�
Before the beginning of a computation	 there is a string present on the program
tape which is called the program	 and there may also be a string present on
the work tape which is called the input string � A computation is successful if
stop occurs at the �nal square of the program tape� In that case	 the result of
the computation is the string that is left on the work tape from the read write
head to the �rst blank on the right� The result of a successful computation
by computer C with program p and input string q is denoted by C�p� q�� The
length of a string s is denoted by jsj� One can now de�ne the class of computers
that will be used in the de�nition of complexity�

A computer U is an optimal universal computer if for every com�
puter C there exists a constant k �depending on C� such that for
all pairs of strings �p� q� the following holds� if C�p� q� is de�ned	
then there exists a p� with jp�j � jpj� k and

U�p�� q� � C�p� q��

The crucial statement is� there exists an optimal universal computer � Indeed	
Turing himself already showed how to construct a computer that is able to
simulate any other computer when it is given a description of it �remember that
a Turing machine is fully described by a �nite table�� If pC is such a description
and U is Turing�s simulating computer	 then we shall have U�pCp� q� � C�p� q�
and so the condition of the theorem is satis�ed if we take p� � pCp� Obviously
the length condition is ful�lled because jp�j � jpj� jpC j�
Now	 let U be a �xed universal computer� The complexity of a string s is

de�ned as
H�s� � minfjpj j U�p� �� � sg

where � denotes the empty string� In words	 this is the length of the shortest
program �running on U� that computes s when the input string is empty� The
quantity H�s� depends on the choice of a universal computer	 but the di
erence
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between two values associated with two universal computers will be bounded
by a constant that depends only on the computers and not on the strings���

The next step is to de�ne the conditional complexity of a string s given

a string t� The de�nition that leads to the closest analogy with Shannon�s
information theory is given by Chaitin ����

H�s j t� � minfjpj j U�p� t�� � sg

where
t� � arg minfjpj j U�p� �� � tg�

In other words	 the conditional complexity of s given t is the length of a shortest
program that computes s from t�	 where t� itself is a shortest program to
compute t��	 This de�nition is chosen such that it becomes easy to construct a
universal computer that will compute both s and t from a program t�p	 where
t� is a shortest program to compute t and p is a shortest program to compute
s from t�� Indeed	 one can build a computer that will �rst simulate U 	 so that
t is obtained	 and then simulates U with t� on the work tape and program p	
in order to produce s� This construction proves that

H�s� t� � H�s� �H�t j s� �O����

With more work	 one can even show that the inequality may be replaced by an
equality�

H�s� t� � H�s� �H�t j s� �O����

This should be compared to formula ��� for Shannon�s entropy� The analogy
with concepts in Shannon�s theory can be taken further by de�ning an �infor�
mation in s about t�

I�s � t� � H�t��H�t j s��
and a �probability of s�

P �s� �
X

U�p��
�s

��jpj�

Then the expected relations hold up to an error term	 such as

I�s � t� � I�t � s� �O���

and
H�s� � � logP �s� �O���


��The fact that the complexity is only de
ned up to an error term limits its practical appli�
cability� A more fundamental reason for the restriction of the complexity to the theoretical
domain is that� as shown by Kolmogorov� the complexity is not e�ectively computable� One
can work� however� with computable approximations of the complexity�

��The alternative is of course to let the complexity of s given t be the length of a shortest
program that computes s from t itself� Besides being more obvious� this also has other
advantages over Chaitin�s de
nition�
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the absence of an expectation operator here can be explained from the fact
that we are considering the complexity of a single sequence�
The algorithmic theory assigns a complexity to single sequences	 whereas

Shannon�s entropy is a statistical concept	 de�ned for ensembles of sequences�
The results that were just mentioned demonstrate a certain formal similarity	
but one may also attempt to establish a connection in another way� To be
speci�c	 let us consider a stationary stochastic process �x�� x�� � � �� with values
in f�� �g	 and �x a length n� The entropy H�x�� x�� � � � � xn� is a number 	
whereas the complexity	 which we now write C�x�� x�� � � � � xn�	 is a stochastic

variable� Taking the expectation of the complexity should bring us close to the
entropy� And indeed	 it was shown by Leung	Yan	Cheong and Cover ���
that	 under a computability condition on the marginal probability distributions	
there is a constant k such that for all n

H�x�� � � � � xn� � E C�x�� � � � � xn� � H�x�� � � � � xn� � k�

In particular	 for the entropy rate of the process one has the relation

H � lim
n��

H�x�� � � � � xn�
n

� lim
n��

E C�x�� � � � � xn�
n

�

One can think of a shortest program for �x�� � � � � xn� as a code for the �mes�
sage� �x�� � � � � xn�	 and from this point of view it is not surprising that the
expected value of the complexity is bounded below by the entropy	 which gives
on the average the shortest code length� It is much more surprising that a uni�
versal coding scheme can be built �i�e�	 one that is not given any information
about the statistical properties of the source�	 which for a very large class of
sources performs worse than the optimal one �which does use the statistical in�
formation� only by a constant that doesn�t depend on the length of the message
to be encoded��
 Adaptive coding schemes are routinely used in data compres�
sion methods� A popular scheme is the one devised by Ziv and Lempel ����	
which forms the basis of the UNIX command compress���
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